metal-organic papers

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

Mamiko Odoko,* Natsuko Tsuchida and Nobuo Okabe

Faculty of Pharmaceutical Sciences, Kinki University, Kowakae 3-4-1, Higashiosaka, Osaka 577-8502, Japan

Correspondence e-mail: odoko@phar.kindai.ac.jp

Key indicators

Single-crystal X-ray study T = 123 KMean $\sigma(\text{C-C}) = 0.011 \text{ Å}$ R factor = 0.071 wR factor = 0.200Data-to-parameter ratio = 16.0

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

Bis{µ-2,2'-[ethane-1,3-diylbis(nitrilomethyl-idyne)]diphenolato}dizinc(II)

The crystal structure of the title compound, $[Zn_2(C_{16}H_{14}-N_2O_2)_2]$, shows the dimeric complex to be centrosymmetric. Distorted pentacoordinate square-pyramidal geometry is formed around Zn^{II} , defined by two N atoms and two O atoms of the *N*,*N'*-bis(salicylidene)-1,2-ethylenediamine (salen) ligand and one bridging O atom of the adjacent ligand. Two salen ligands in this dimeric complex are twisted in opposite directions to each other.

Comment

Zinc(II), a trace element for mammals, is essential for the various biochemical and physiological processes. Until now, Zn^{II} and its complexes have been found to exhibit *in vitro* insulinomimetic activity and anti-diabetic effects in animals (Chen *et al.*, 1998; Song *et al.*, 2001; Sakurai *et al.*, 2002). Several vanadium complexes with tetradentate Schiff base salen-type [salen is *N*,*N'*-bis(salicylidene)-1,2-ethylene-diamine] ligands have been studied for use as insulin-enhancing agents (Durai & Saminathan, 1997; Correia *et al.*, 2004). In the present study, aimed to design new insulinomimetic Zn^{II} compounds, we have synthesized the title compound, (I), which has salen as the tetradentate Schiff base ligand, and analysed its crystal structure.

The crystal structure of (I) is shown in Fig. 1 with the atomnumbering scheme. Selected geometric parameters are given in Table 1. (I) is a centrosymmetric dimeric complex, rather than monomeric as in $[Zn^{II}(salen) \cdot H_2O]$ (Hall & Moore, 1966) and $[Zn^{II}(salen)py]$ (py = pyridine; Reglinski *et al.*, 2002). $[Zn^{II}(salen)]$ units in (I) are connected by the oxygen bridges $Zn1-O1^i$ and $O1-Zn1^i$ [symmetry code: (i) $\frac{3}{2} - x, \frac{1}{2} - y, 1 - y$

© 2006 International Union of Crystallography All rights reserved Received 22 February 2006 Accepted 3 March 2006

Figure 1

A view of the structure of (I), showing the atom-numbering scheme. Displacement ellipsoids are shown at the 50% probability level and H atoms are shown as spheres of arbitrary radii. Symmetry code: (i) $\frac{3}{2}-x$, $\frac{1}{2}-y$, 1-z.]

z]. Distorted pentacoordinate square-pyramidal geometry is formed around Zn^{II}, defined by two N atoms and two O atoms of the salen ligand as the basal plane and one bridging O atom of the adjacent ligand as the apical atom. Zn^{II} sits in the body of the pyramid, 0.375 (3) Å from the O1-N1-N2-O2 basal plane. The two planar (r.m.s. deviation of fited atoms = 0.0116 Å for O1/C1-C6/C7/N1 and 0.0425 Å for O10/C11-C16/C17/N2) Schiff base units are inclined at 21.9 (2)° in an umbrella-like conformation, similar to those in [Zn^{II}(salen)·H₂O] and [Zn^{II}(salen)py]. The two salen ligands in (I) are twisted in opposite directions to each other. The ethylenediamine group of the salen ligand is in a *gauche* conformation [N1-C8-C9-N2 - 45.0 (7)°], as seen in [Zn^{II}(salen)·H₂O].

The crystal packing of (I) is stabilized by van der Waals interactions between neighboring complexes.

Experimental

N,N'-Bis(salicylidene)-1,2-ethylenediamine (5 mg) was dissolved in MeOH (5 ml) and zinc perchlorate hexahydrate (3.4 mg) dissolved in a small amount of water was added at room temperature. Colorless needle-shaped crystals appeared from this mixture after evaporation over a few days at room temperature.

Crystal data

$[Zn_2(C_{16}H_{14}N_2O_2)_2]$	$D_x = 1.646 \text{ Mg m}^{-3}$
$M_r = 663.36$	Mo $K\alpha$ radiation
Monoclinic, $C2/c$	Cell parameters from 6984
a = 27.06 (5) Å	reflections
b = 6.79 (1) Å	$\theta = 3.0-27.5^{\circ}$
c = 14.70 (3) Å	$\mu = 1.84 \text{ mm}^{-1}$
$\beta = 97.67 \ (7)^{\circ}$	T = 123.1 K
V = 2677 (8) Å ³	Needle, colorless
Z = 4	$0.60 \times 0.05 \times 0.05 \mbox{ mm}$
Data collection	
Rigaku R-AXIS RAPID	3063 independent reflections
diffractometer	919 reflections with $F^2 > 2\sigma(F^2)$
ω scans	$R_{\rm int} = 0.158$
Absorption correction: multi-scan	$\theta_{\rm max} = 27.5^{\circ}$
(ABSCOR: Higashi, 1995)	$h = -34 \rightarrow 34$

 $T_{\min} = 0.197, T_{\max} = 0.912$ 12653 measured reflections

- $h = -34 \rightarrow 54$ $k = -8 \rightarrow 8$
- $l = -19 \rightarrow 19$

Refinement

Refinement on F^2	All H-atom parameters refined
$R[F^2 > 2\sigma(F^2)] = 0.071$	$w = 1/[\sigma^2 (F_0^2) + (0.0929P)^2]$
$wR(F^2) = 0.200$	where $P = (F_0^2 + 2F_c^2)/3$
S = 0.89	$(\Delta/\sigma)_{\rm max} = 0.001$
3063 reflections	$\Delta \rho_{\rm max} = 0.97 \ {\rm e} \ {\rm \AA}^{-3}$
191 parameters	$\Delta \rho_{\min} = -1.06 \text{ e } \text{\AA}^{-3}$

Table 1

Selected geometric parameters (Å, °).

Zn1-O1	2.053 (5)	Zn1-N1	2.072 (5)
Zn1-O1 ⁱ	2.053 (5)	Zn1-N2	2.078 (6)
Zn1-O2	1.973 (4)		
$O1-Zn1-O1^{i}$	88.3 (2)	O1 ⁱ -Zn1-N1	102.2 (2)
O1-Zn1-O2	98.0 (2)	O1 ⁱ -Zn1-N2	113.0 (2)
O1-Zn1-N1	86.2 (2)	O2-Zn1-N2	87.4 (2)
$O1^{i}-Zn1-O2$	100.4 (2)	N1-Zn1-N2	80.5 (2)

Symmetry code: (i) $-x + \frac{3}{2}, -y + \frac{1}{2}, -z + 1.$

All H atoms were located in difference Fourier maps and then were placed in ideal positions and refined as riding $[C-H = 0.93 \text{ Å} \text{ and } U_{iso}(H) = 1.2U_{eq}(C)$ for aromatic H atoms; C-H = 0.97 Å and $U_{iso}(H) = 1.2U_{eq}(C)$ for methine and methylene H atoms]. The crystal used for data collection was very poorly diffracting but it was the best that could be found. The highest electron-density peak was located close to atoms Zn1 and O2.

Data collection: *RAPID-AUTO* (Rigaku, 1998); cell refinement: *RAPID-AUTO*; data reduction: *CrystalStructure* (Rigaku/MSC, 2005) and *CRYSTALS* (Betteridge *et al.*, 2003); program(s) used to solve structure: *SIR97* (Altomare *et al.*, 1999); program(s) used to refine structure: *SHELXL97* (Sheldrick, 1997); molecular graphics: *ORTEP-3* (Farrugia, 1997); software used to prepare material for publication: *CrystalStructure*.

References

- Altomare, A., Burla, M. C., Camalli, M., Cascarano, G., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. & Spagna, R. (1999). J. Appl. Cryst. 32, 115–119.
- Betteridge, P. W., Carruthers, J. R., Cooper, R. I., Prout, C. K. & Watkin, D. J. (2003). J. Appl. Cryst. 36, 1487.
- Chen, M. D., Liou, S. J., Lin, P. Y., Yang, V. C., Alexander, P. S. & Lin, W. H. (1998). *Biol. Trace Elem. Res.* **61**, 303–311.
- Correia, I., Pessoa, J. C., Duarte, M. T., Henriques, R. T., Piedade, M. F. M., Veiros, L. F., Jakusch, T., Kiss, T., Doernyei, A., Castro, M. M. C. A., Geraldes, C. F. G. C. & Avecilla, F. (2004). *Chem. Eur. J.* 10, 2301–2317.
- Durai, N. & Saminathan, G. (1997). J. Clin. Biochem. Nutr. 22, 31-39.
- Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.
- Hall, D. & Moore, F. H. (1966). J. Chem. Soc. A Inorg. Phys. Theor. pp. 1822– 1824.
- Higashi, T. (1995). ABSCOR. Rigaku Corporation, Tokyo, Japan.
- Reglinski, J., Morris, S. & Stevenson, D. E. (2002). *Polyhedron*, **21**, 2175–2182. Rigaku (1998). *RAPID-AUTO*. Rigaku Corporation, 3-9-12 Akishima, Tokyo
- 196-8666, Japan.
- Rigaku/MSC (2005). CrystalStructure. Version 3.7. Rigaku/MSC, 9009 New Trails Drive, The Woodlands, TX 77381-5209, USA.
- Sakurai, H., Kojima, Y., Yoshikawa, Y., Kawabe, K. & Yasui, H. (2002). Coord. Chem. Rev. 226, 187–198.
- Sheldrick, G. M. (1997). SHELXL97. University of Göttingen, Germany.
- Song, M. K., Rosenthal, M. J., Hong, S., Harris, D. M., Hwang, I., Yip, I., Golub, M. S., Ament, M. E. & Go, V. L. W. (2001). *Metab. Clin. Exper.* 50, 53–59.